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Abstract. The effect of a longitudinal random crystal field interaction on the phase diagrams of the mixed
spin transverse Ising model consisting of spin-1/2 and spin-1 is investigated within the finite cluster approx-
imation based on a single-site cluster theory. In order to expand a cluster identity of spin-1, we transform
the spin-1 to spin-1/2 representation containing Pauli operators. We derive the state equations applicable
to structures with arbitrary coordination number N . The phase diagrams obtained in the case of a hon-
eycomb lattice (N = 3) and a simple-cubic lattice (N = 6), are qualitatively different and examined in
detail. We find that both systems exhibit a variety of interesting features resulting from the fluctuation of
the crystal field interactions.

PACS. 05.30.-d Quantum statistical mechanics – 05.50.+q Lattice theory and statistics; Ising problems
– 05.70.-a Thermodynamics

1 Introduction

Over recent years there has been considerable interest in
the theoretical study of transverse Ising models. The spin-
1/2 transverse Ising model was originally introduced by
de Gennes [1] as a valuable model for the tunneling of
the proton in hydrogen-bonded ferroelectrics [2] such as
the KH2PO4 type. Since then, it has been successfully
applied to several physical systems, such as cooperative
Jahn-teller systems [3] (like DyVO4, and TbVO4), order-
ing in rare earth compounds with a singlet crystal-field
ground state [4], and also to some real magnetic materi-
als with strong uniaxial anisotropy in a transverse field
[5]. It has been extensively studied by the use of vari-
ous techniques [6–9], including the effective field theory
[10,11] based on a generalized but approximated Callen-
Suzuki relation derived by Sà Barreto, Fittipaldi and Zeks.
In addition to the works on the two-state spin systems,
the spin-one transverse Ising models [12–14] have received
some attention. The influence of the crystal field interac-
tion on its phase diagram has also been investigated [15].

Recently, attention has been directed to the study of
the magnetic properties of a two-sublattice mixed spin
Ising systems. They are of interest for the following main
reasons. They have less translational symmetry than their
single spin counterparts, and are well adapted to study a
certain type of ferrimagnetism [16]. It has been shown that
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the MnNi(EDTA)-6H2O complex is an example of a mixed
spin system [17]. The mixed Ising spin system consisting
of spin-1/2 and spin-1 has been studied by renormaliza-
tion group technique [18,19], by high-temperature series
expansions [20], by free-fermion approximation [21] and
by finite cluster approximation [22]. The effects of single
ion anisotropy on its transition temperature have been
investigated by the renormalization group method [19],
Monte-Carlo simulation in the case of a square lattice [23],
effective field theory with correlations [24] and finite clus-
ter approximation [25]. The two latter methods predict a
tricritical behaviour in systems with a coordination num-
ber N larger than three. It is important to note here that
the exact solution for the transition temperature, which
is always of second order, can be obtained analytically if
the structure of the system is chosen to be a honeycomb
lattice (N = 3) [26,27].

Very recently, we have investigated [28], using the finite
cluster approximation [29,30], the influence of a transverse
field on the magnetic properties of the three dimensional
(N = 6) mixed spin-1/2 and spin-1 Ising system with uni-
form longitudinal crystal field interactions. We have found
that the system keeps a tricritical behaviour only when the
transverse field strength is relatively small; otherwise the
critical behaviour disappears and all transitions are always
of second order for any values of the crystal field interac-
tion and the transverse field. In this latter study, we have
neglected the fluctuations of the crystal field interaction.
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The purpose of this paper is to examine the effects of
the fluctuations of a longitudinal crystal field interaction
on the phase diagram of the mixed spin-1/2 and spin-1
transverse Ising system. Such a system may be described
by the following Hamiltonian

H=−
∑
〈ij〉

JijσizSjz−Ω1

∑
i

σix−Ω2

∑
j

Sjx +
∑
j

DjS
2
jz

(1)

where σiα and Sjα(α = x, z) are the α-components of
spin-1/2 and spin-1 operators at sites i and j, respectively.
Jij = J is the exchange interaction and the first summa-
tion is carried out only over nearest-neighbour pairs of
spins. Ω1 and Ω2 are the transverse fields, and Dj is as-
sumed to be randomly distributed according to an inde-
pendent probability distribution function P (Dj),

P (Dj) =
1

2

{
δ [Dj −D(1 + d)] + δ [Dj −D(1− d)]

}
(2)

with

d =
∆D

D
≤ 1, (3)

where ∆D is the fluctuation from the mean value D.
To this end, we use the finite cluster approximation

[29,30] with an expansion technique for cluster identities
of spin-1 localized on one sublattice, which correctly ac-
counts for the single-site kinematic relations.

Our presentation is as follows. In Section 2 we describe
the theoretical framework and calculate the state equa-
tions. In Section 3 we investigate and discuss the phase
diagrams for the honeycomb lattice (N = 3) and the sim-
ple cubic lattice (N = 6).

2 Finite cluster approximation

The theoretical framework to be used in the study of
the system described by the Hamiltonian (1) is the
Finite Cluster Approximation (FCA), based on a single-
site cluster theory. In this method, attention is fo-
cused on a cluster comprising just a single selected spin
σo(So), and its nearest-neighbour spins {S1, S2, ..., SN}
({σ1, σ2, ..., σN}), with which it directly interacts. We
split the total Hamiltonian (1) into two parts, H =
Ho+H ′, where Ho includes all parts of H associated with
the lattice site o. In the present system, Ho takes the form

Hoσ = A1σoz +B1σox, (4)

HoS = A2Soz +B2Sox +DoS
2
oz, (5)

where

A1 =−J
N∑
j=1

Sjz , B1 =−Ω1, A2 =−J
N∑
i=1

σiz , B2 =−Ω2,

(6)

if the lattice site o belongs to σ- or S-sublattice, respec-
tively.

The problem consists in evaluating the sublattice lon-
gitudinal and transverse components of the magnetization
and the quadrupolar moments. In order to calculate them,
we choose a representation in which σoz and Soz are diag-
onal and denote by 〈σoα〉c and 〈Snoα〉

ε
c, (ε = + or − and

n = 1, 2), respectively, the mean value of σoα and Soα
for a given configuration c of all other spins (i.e. when all
other spin σi and Sj (i, j 6= 0) have fixed values) and a
fixed configuration {Di = (1±d)D} of the random crystal
field. Neglecting the fact that Ho and H ′ do not commute,
〈σoα〉c and 〈Snoα〉

ε
c, are given by

〈σoα〉c =
Trσoσoα exp(−βHoσ)

Trσo exp(−βHoσ)
(7)

〈Snoα〉
ε
c =

TrSoS
n
oα exp(−βHoS)

TrSo exp(−βHoS)
(8)

where Trσo (or TrSo) means the trace performed over σo
(or So) only. As usual β = 1/T , where T is the abso-
lute temperature. Since the crystal field Di on the site
i is assumed to take on two values D(1 ± d) with equal
probability, the sublattice magnetizations µα, mα and the
quadrupolar moments qα(α = x, z) are then given by

µα ≡
〈
〈σoα〉c

〉
=

〈
Trσoσoα exp(−βHoσ)

Trσo exp(−βHoσ)

〉
, (9)

mα ≡
1

2

〈
〈Soα〉

+
c + 〈Soα〉

−
c

〉
=

1

2

〈
TrSoSoα exp(−βHoS)

TrSo exp(−βHoS)

∣∣∣∣
Do=D(1+d)

+
TrSoSoα exp(−βHoS)

TrSo exp(−βHoS)

∣∣∣∣
Do=D(1−d)

〉
, (10)

qα ≡
1

2

〈
〈S2
oα〉

+
c + 〈S2

oα〉
−
c

〉
=

1

2

〈
TrSoS

2
oα exp(−βHoS)

TrSo exp(−βHoS)

∣∣∣∣
Do=D(1+d)

+
TrSoS

2
oα exp(−βHoS)

TrSo exp(−βHoS)

∣∣∣∣
Do=D(1−d)

〉
, (11)

which can be considered as the starting point of the single-
site cluster approximation. 〈...〉 denotes the average over
all spin configurations. Equations (9) to (11) are not ex-
act. Neverthless, they have been accepted as a reasonable
starting point [10] for transverse Ising systems and have
been successfully applied to a number of interesting trans-
verse Ising models [10,11,28]. We have to emphasize that
in the Ising limit (Ω1 = Ω2 = 0), the Hamiltonian (1)
contains only σiz and Sjz . Then, the relations (9, 10, 11)
become exact identities.

To calculate 〈σoα〉c and 〈Snoα〉
ε
c one has first to diago-

nalize the single-site Hamiltonians Hoσ and Hos, respec-
tively. Hoσ can be written in a diagonal form if we use the



N. Benayad et al.: Mixed spin transverse Ising model with random crystal field 689

following rotation transformation

σoz = cosϕσoz′ − sinϕσox′ (12)

σox = sinϕσoz′ + cosϕσox′ , (13)

with

cosϕ =
−A1[

A2
1 +B2

1

]1/2 , sinϕ =
−B1[

A2
1 + B2

1

]1/2 · (14)

Then, evaluating the inner traces in (7) over the states of
the selected spin σo, we obtain

〈σoz〉c =
−A1

2
[
A2

1 +B2
1

]1/2 tanh

{
β

2

[
A2

1 +B2
1

]1/2}
(15)

〈σox〉c =
−B1

2
[
A2

1 +B2
1

]1/2 tanh

{
β

2

[
A2

1 +B2
1

]1/2}
· (16)

Hos can also readily be diagonalized. Its eigenvalues γk
are given by

γk =
2

3

(
Do + 3

√
η cos(θk)

)
, k = 1, 2, 3 (17)

with

θk =
1

3
arcos

(
−27 r

2η

)
+

2

3
(k − 1)π (18)

η =
3
√

3

2

[
27(r)2 +

∣∣4r3 + 27(r)2
∣∣]1/2 (19)

and

r = −(A2
2 +B2

2)−
D2
o

9
, r = −

Do

3

(
2A2

2 −
2

9
D2
o −B

2
2

)
·

(20)

The corresponding eigenvectors are

|χ〉k = ak|+〉+ bk|−〉+ ck|o〉, (21)

with

ak =
|B2(γk−Do+A2)|

√
2
{
B2

2

[
(γk−Do)2+A2

2

]
+
[
(γk−Do)2−A2

2

]2}1/2

(22)

bk =
γk −Do −A2

γk −Do +A2
ak, ck =

√
2

B2
(γk −Do −A2)ak. (23)

Using the above eigenvalues and eigenvectors, to perform
the inner traces in (8) over the states of the selected spin
So and setting n = 1 and 2, we obtain

〈Soz〉
±
c =

∑3
k=1

[
(a±k )2 − (b±k )2

]
exp(−βγ±k )∑3

k=1 exp(−βγ±k )
, (24)

〈Sox〉
±
c =

√
2

∑3
k=1(a±k + b±k )c±k exp(−βγ±k )∑3

k=1 exp(−βγ±k )
, (25)

〈S2
oz〉
±
c =

∑3
k=1

[
(a±k )2 + (b±k )2

]
exp(−βγ±k )∑3

k=1 exp(−βγ±k )
, (26)

〈S2
ox〉
±
c =

∑3
k=1

[
1
2 (a±k + b±k )2 + (c±k )2

]
exp(−βγ±k )∑3

k=1 exp(−βγ±k )
,

(27)

where

a±k = ak(Do = (1± d)D), b±k = bk(Do = (1± d)D),

c±k = ck(Do = (1± d)D), γ±k = γk(Do = (1± d)D).
(28)

From equations (15, 16, 24−27), we easily observe that the
sublattice magnetizations µα, mα and quadrupolar mo-
ments qα are functions of

∑
j Sjz or

∑
i σiz . They can be

written as

µα =

〈
hα

 N∑
j=1

Sjz

〉 ,
mα =

〈
fα

(
N∑
i=1

σiz

)〉
,

qα =

〈
gα

(
N∑
i=1

σiz

)〉
, (29)

with

hα

 N∑
j=1

Sjz

 = 〈σoα〉c, (30)

fα

(
N∑
i=1

σiz

)
=

1

2

[
〈Soα〉

+
c + 〈Soα〉

−
c

]
, (31)

gα

(
N∑
i=1

σiz

)
=

1

2

[
〈S2
oα〉

+
c + 〈S2

oα〉
−
c

]
. (32)

When calculating the average on the right hand side of
equations (29), we use the fact that any function E(σz)
and E(Sz) of σz(= ±1/2) and Sz(= 0,±1) can be written
as the linear superposition

E(σz) = E1 +E2σz , (33)

E(Sz) = E1 +E2Sz +E3S
2
z , (34)

with appropriate coefficients E1,2 and E1,2,3. Applying
this to all spins σiz and Sjz in equations (30−32), the
functions hα, fα and gα are decomposed as

hα

 N∑
j=1

Sjz

 =
N∑
q=0

N−q∑
p=0

Hα
p,q{S

2
z , Sz}N,p,q, (35)

fα

(
N∑
i=1

σiz

)
=

N∑
q=0

Fαq (N){σz}N,q, (36)

gα

(
N∑
i=1

σiz

)
=

N∑
q=0

Gαq (N){σz}N,q, (37)

where {S2
z , Sz}N,p,q denotes the superposition of all

the terms containing p factors of S2
jz and q factors of

Sj′z with j 6= j′. These factors are selected from the



690 The European Physical Journal B

set {S1z, S2z, ..., SNz, S
2
1z, S

2
2z, ..., S

2
Nz}. For example, if

N = 4, p = 2 and q = 1, then

{S2
z , Sz}4,2,1 = S1z(S

2
2zS

2
3z + S2

2zS
2
4z + S2

3zS
2
4z)

+ S2z(S
2
1zS

2
3z + S2

1zS
2
4z + S2

3zS
2
4z)

+ S3z(S
2
1zS

2
2z + S2

1zS
2
4z + S2

2zS
2
4z)

+ S4z(S
2
1zS

2
2z + S2

1zS
2
3z + S2

2zS
2
3z). (38)

{σz}N,q denotes the superposition of all the terms con-
taining q different factors of σiz selected from the set
{σ1z, σ2z , ..., σNz}. It may be noted that the coefficients

F
(α)
q (N) and G

(α)
q (N) for spin-1/2 depend on the nearest-

neighbours coordination number N , whereas the coeffi-
cients Hα

p,q are in fact independent of N .
Now, the problem is to determine the coefficients Hα

p,q,

F
(α)
q (N) and G

(α)
q (N). To evaluate Hα

p,q, it is advanta-
geous to transform the spin-1 system to spin-1/2 repre-
sentation containing the Pauli operators σjz = ±1 [31],
by setting Sjz = τjzσjz with τjz = 0, 1. In this represen-
tation (35) becomes

hα

 N∑
j=1

τjzσjz

 =
N∑
q=0

N−q∑
p=0

Hα
p,q{τz, τzσz}N,p,q, (39)

which must be satisfied for arbitrary choices of τjz . Now
let us choose the first r out of the N operators τjz to be
unity, and the remainder zero. Then (39) gives

hα

 r∑
j=1

σjz

 =
r∑
q=0

r−q∑
p=0

Hα
p,qC

r−q
p {σz}r,q, (40)

where {σz}r,q has the same meaning as {σz}N,q, but σjz
and N are replaced by σjz and r, respectively. Cmn are the
binomial coefficients m!/[n!(m− n)!]. That is

hα

 r∑
j=1

σjz

 =
r∑
q=0

e(α)
q (r){σz}r,q, (41)

with

e(α)
q (r) =

r−q∑
p=0

Hα
p,qC

r−q
p . (42)

As is clear from equation (42), the coefficients e
(α)
q (r)

for the spin-1/2 problem depend on the total number of
the present spins. The above transformation of the spin-1
problem of (35) containing N spins to spin-1/2 problem
containing r spins, enables us to use directly the results
already established in [32] for the spin-1/2 system. Ap-
plying these results to the single group of r spins (41), we
obtain

e(α)
q (r) =

1

2rCrq

r∑
n1=0

Crn1
εn1(r, q)hn1α(r − 2n1), (43)

where

εn1(r, q) =

n1∑
i=0

(−1)iCn1
i Cr−n1

q−i . (44)

Once the coefficients e
(α)
q (r) have been calculated, the co-

efficients Hα
p,q may be found by the following procedure.

First, H
(α)
o,q is obtained by setting r = q in (42). That is

H(α)
o,q = e(α)

q (q). (45)

By expressing (42) as a recurrence relation, namely,

H
(α)
r−q,q = e(α)

q (r) −
r−q−1∑
p=0

H(α)
p,q C

r−q
p , (46)

and using (43) we obtain the coefficients H
(α)
1,q ; H

(α)
2,q ; ...;

H
(α)
N−q,q when r = q + 1, q + 2, ..., N , respectively. Thus,

doing this for each value of q (∈ {1, 2, ..., N}), we deter-
mine all the coefficients Hα

p,q appearing via the right-hand
side of (35). On the other hand, to calculate 〈fα(

∑
i σiz)〉

and 〈gα(
∑
i σiz)〉 we use directly the results established in

[32] for the spin-1/2 system. Then the coefficients F
(α)
q (N)

and G
(α)
q (N) are given by

F (α)
q (N) =

1

2N−qCNq

N∑
n2=0

CNn2
εn2(N, q)fn2α

[
1

2
(N−2n2)

]
,

(47)

G(α)
q (N) =

1

2N−qCNq

N∑
n3=0

CNn3
εn3(N, q)gn3α

[
1

2
(N−2n3)

]
,

(48)

where

εn(N, q) =
n∑
i=0

(−1)iCni C
N−n
q−i , n = n2 orn3. (49)

The sublattice magnetizations µα and mα and the
quadrupolar moments qα(α = z, x) are given by equa-
tions (29). They are valid for any lattice (arbitrary co-
ordination number N), and constitute a set of relations,
according to which we can study the present system. How-
ever, in order to carry out the average over all spin con-
figurations implied in these equations, we have to deal
with multispin correlations functions. The problem be-
comes mathematically untractable if we try to treat them
in the spirit of the FCA. In this work, we use the simplest
approximation in which the correlations between quanti-
ties pertaining to different sites are neglected,

〈σizσkz ...σlz〉 ∼= 〈σiz〉〈σkz〉...〈σlz〉

〈Sp1

jzS
p2
mz...S

p4
nz〉 ∼= 〈S

p1

jz 〉〈S
p2
mz〉...〈S

p4
nz〉, (50)

with i 6= k 6= ... 6= l, j 6= m 6= ... 6= n, and pi = 1 or
2. If this is done, and counting the number of elements
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of the sets {S2
z , Sz}N,p,q and {σz}N,q which are equal,

respectively, to CNp C
N−p
q and CNq , we find the following

coupled equations

µα =
N∑
q=0

N−q∑
p=0

CNp C
N−p
q H(α)

p,qm
q
zq
p
z , (51)

mα =
N∑
q=0

CNq F
(α)
q (N)µqz , (52)

qα =
N∑
q=0

CNq G
(α)
q (N)µqz. (53)

3 Results and discussions

In this paper we are first interested in investigating the
phase diagrams of the system in the case of a uniformly
applied transverse field (Ω1 = Ω2 = Ω) when the struc-
ture of the system is the honeycomb lattice (N = 3) and
the simple cubic lattice (N = 6). At high temperature, the
longitudinal magnetizations µz and mz are zero. Below a
transition temperature Tc, we have spontaneous ordering
µz 6= 0 and mz 6= 0, while the corresponding transverse
magnetizations µx and mx are expected to be unequal
zero at all temperatures. To calculate Tc, we substitute
mz and qz in (51) with their expressions taken from (52)
and (53). Then, we obtain an equation for µz of the form

µz = a(T,D,Ω, d)µz + b(T,D,Ω, d)µ3
z + ..., (54)

where

a = N2F
(z)
1

N−1∑
p=0

CN−1
p H

(z)
p,1

(
G

(z)
0

)p
, (55)

and

b = N

N−1∑
p=0

CN−1
p H

(z)
p,1

[
NpCN2 F

(z)
1 G

(z)
2

(
G

(z)
0

)p−1

+ CN3 F
(z)
3

(
G

(z)
0

)p]
+N3

N−3∑
p=0

CNp C
N−p
3 H

(z)
p,3

(
F

(z)
1

)3(
G

(z)
0

)p
, (56)

within this approximation. As usual, the second-order
transition temperature Tc, as a function of Ω, D and d, is
then determined by the condition

a(Tc, Ω,D, d) = 1. (57)

The magnetization µz in the vicinity of the second-order
transition is given by

µ2
z =

1− a

b
· (58)

The right-hand side of (58) must be positive. If this is not
the case, the transition is of first-order, and the point at
which

a = 1 and b = 0, (59)

characterizes the tricritical point.

Fig. 1. The phase diagram in T−D plane of the mixed spin-
1/2 and spin-1 transverse Ising model on the honeycomb lattice
(N = 3), when d = 0.5. The number accompanying each curve
denotes the value of Ω/J.

3.1 The honeycomb lattice

Let us first investigate the phase diagram of the system
when its structure is the honeycomb lattice (N = 3). This
system does not exhibit a tricritical behaviour for any val-
ues of the parameters T , D, Ω and d. This means that
the tricritical behaviour does not exist in the system with
N = 3 even if the fluctuation of the crystal field interac-
tion is taken into account.

In order to have an idea on the effects of a fluctua-
tion of the crystal field on the mixed spin transverse Ising
model, we have plotted in Figure 1 the phase diagrams
in the (T, D) plane, for a fixed value of d (d = 0.5) and
selected values of the transverse field Ω. When Ω = 0,
the critical temperature Tc decreases with the increase
of D, and at low temperatures a reentrant phenomenon
appears. This effect is due to the competition between
the exchange interaction and the fluctuation of the crys-
tal field. We also plot in the figure, various transition lines
when the strength of the transverse field takes values less
than the critical one Ωc (Ωc = 1.42 J [28]). It is seen that
the system exhibits a reentrant behaviour only when Ω is
relatively small (0 ≤ Ω ≤ 0.48 J) and disappears when
Ω is larger than Ω = 0.48 J. Thus, the fluctuation of the
longitudinal crystal field has especially a qualitative influ-
ence on the mixed spin transverse Ising model only for not
large values of the transverse field.

Reentrance in this sense can be explained by a com-
petition of energy E and entropy S in the free energy
F = E − TS. The entropy (measuring the disorder of the
state) is usually less important at low temperatures. For
pure systems the energy term becomes dominant and an
ordered state of the physical system is preferred. How-
ever, for a magnetic system with random crystal field an
effective reduction of the energy E as compared with a
disordered state may not be possible for all interaction
parameters. First of all, the crystal field D by itself en-
ergetically disfavours the state with |Sj | = 1 for positive
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values of D. Secondly, the fluctuation d of the crystal field
induces inherent disorder. For a given set of D and d this
conspires to a thermodynamic state with 〈Sj〉 = 0 for suf-
ficiently low and sufficiently high temperature, but with
〈Sj〉 > 0 for some intermediate temperature and hence
〈σj〉 > 0. The transversal field is expected to order the
system in transversal direction and to reduce the effect of
disorder. This qualitative expectation is indeed verified by
our quantitative calculations.

In Figure 2a, the variation of Tc with D is plotted in
the absence of the transverse field (Ω = 0) and for vari-
ous values of d. When the fluctuations of the crystal field
are neglected (d = 0), the critical temperature decreases
gradually with D and vanishes at the exact critical value
Dc = 1.5 J of the crystal field. Such behaviour is predicted
by the exact calculation [26,27]. But, for finite d, the reen-
trant phenomenon appears and it becomes more and more
pronounced with increasing values of d. We also note that
for small D, Tc does not depend on the value of d, as seen
in Figure 2a. From this property and due to the fluctua-
tions of the crystal field, the phase boundary lines can take
a finite value even for the value of D larger than Dc. We
note that in a small transverse field Ω (0 ≤ Ω ≤ 0.48 J),
the system keeps this behaviour for any value of d. But for
Ω larger than Ω = 0.48 J, the above reentrant behaviour
completely disappears. In this case, when Ω belongs to
the restricted region 0.48 < Ω/J < 0.94, for high tran-
sition temperatures Tc, the system is not sensitive to the
fluctuation of the crystal field, while at low Tc, it remark-
ably depends on the value of d, as is clearly shown in
Figure 2b for Ω = 0.5 J. One important result is exhib-
ited by the system when Ω approaches (0.94 ≤ Ω/J < Ωc)
its critical value Ωc = 1.42 J. In fact, in this range, the
ferromagnetic frontier is independent of the fluctuation of
the crystal field as seen in Figure 2c for Ω = 1.0 J.

In order to clarify the influence of d on the transition
temperature Tc in the mixed spin transverse Ising model
on the honeycomb lattice, we study the changes of Tc with
d for fixed D and selected values of the transverse field. In
this case, low and high values of the mean value D of the
crystal field lead to two different behaviours of Tc with d:
i) as is depicted in Figure 3a (D/J = 1), for low D, the
critical temperature expresses a small variation with the
increase of d for any strength of the transverse field Ω less
than Ωc; ii) as is plotted in Figure 3b, (D = 1.5 J), for rel-
atively high D, the phase diagram exhibits in T − d plane
a reentrant phenomenon for small values of the transverse
field Ω. In general the ferromagnetic phase increases with
increasing d. This can be explained by clusters in the sys-
tem with small crystal field, therefore these clusters or-
der at higher temperatures. The transversal field reduces
the longitudinal ferromagnetic order except at very low
temperature where the transversal field is acting against
the disorder. At low T and small transversal fields the
reentrance phenomenon is reduced. Hence, there appears
magnetic order in spin space with transversal as well as
longitudinal components! This can be seen in Figure 3b.
Note that the bulge in the phase boundary (reentrant

(a)

(b)

(c)

Fig. 2. The phase diagram in T−D plane of the mixed spin-
1/2 and spin-1 transverse Ising model on the honeycomb lattice
(N = 3) is shown for different values of d when Ω is kept fixed:
(Ω = 0 (a), Ω = 0.5 J (b), Ω = 1.0 J (c)).
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(a)

(b)

Fig. 3. The variation of the transition temperature with d for
the honeycomb lattice (N = 3), when the mean value of the
crystal field is kept fixed (D = 1 J (a) and D = 1.5 J (b)). The
number accompanying each curve denotes the value of Ω/J.

phenomenon) gradually decreases with the increase of Ω
and disappears for Ω larger than Ω = 0.48 J.

On the other hand, it is interesting to study, at the
ground state of the system, the effects of the fluctuation
of the crystal field on the critical value Ωc of the trans-
verse field. For a given mean value D of the crystal field,
the changes of Ωc with d is obtained from the solution
of the equation (57) keeping Tc = 0. This is plotted in
Figure 4, for several values of D. The results for the criti-
cal transverse field Ωc look rather independent of d when
D is less than D = 0.96 J. For larger values of D, Ωc
increases slightly with increasing values of d; but when
D approaches its critical value Dc = 1.5 J, Ωc curve ex-
presses rapid increase with d.

Fig. 4. Plot of the critical value Ωc of the transverse field as a
function of d for the honeycomb lattice (N = 3). The number
accompanying each curve denotes the value of D/J.

Fig. 5. The phase diagram in T−D plane of the mixed spin-
1/2 and spin-1 transverse Ising model on the simple cubic lat-
tice (N = 6), when d = 0.5. The number accompanying each
curve denotes the value of Ω/J. Dashed line corresponds to the
tricritical line.

3.2 The simple cubic lattice

First, we have to point out for the simple cubic lattice
(N = 6), when ignoring the fluctuation of the crystal field
(d = 0) [28], that the transition is of first order for small Ω
and D near its critical value Dc = 3 J; the remaining part
of the transition surface is always of second order for any
values of the transverse and crystal fields. Now, by means
of equations (57, 59), we are in a position to examine the
effects of crystal field disorder on the phase diagram of the
corresponding pure case (d = 0).

Figure 5 shows the phase diagram in T−D plane for a
fixed value of d (d = 0.5) and various values of Ω. In the
absence of the transverse field (Ω/J = 0), and in contrast
to the caseN = 3 (Fig. 1), the critical line ends in a tricrit-
ical point. As seen in the figure, this tricritical behaviour
is kept by the system when the strength of the transverse
field Ω is less than 0.82 J. If Ω belongs to the range 0.82 J
< Ω < Ωc (Ωc = 3.516 J being the critical value of the
transverse field), the tricritical behaviour disappears and
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(a) (b)

(c) (d)

Fig. 6. The phase diagram in T−D plane of the mixed spin-1/2 and spin-1 transverse Ising model on the simple cubic lattice
(N = 6) is shown for different values of d when Ω is kept fixed: Ω = 0 (a), Ω = 1.0 J (b), Ω = 2.0 J (c), Ω = 3.3 J (d).

all transitions are of second order for any mean value D
of the crystal field interaction.

In Figure 6a, the critical temperature is plotted as a
function of D in zero transverse field (Ω = 0) and various
values of d. For d = 0, the critical temperature decreases
with the increase of D and ends in a tricritical point. As
shown in the figure, the system keeps this tricritical be-
haviour even when d takes a finite value. Such qualitative
behaviour of the phase diagram is exhibited by the system
when the transverse field strength belongs to the range
0 ≤ Ω/J < 0.807. In the region 0.807 < Ω/J < 1.165,
the Tc curves which correspond to high fluctuations of the
crystal field (high values of d) become second order for any
D; while the tricritical behaviour exists only for small d as
is shown in Figure 6b forΩ = 1.0 J. If 1.165 ≤ Ω/J < 3.24,
we obtain a phase diagram with no tricritical behaviour
for any d as is plotted in Figure 6c for Ω = 2.0 J. We
note that in these three ranges of Ω when D is small, Tc
does not depend on d and, due to the fluctuation of the
crystal field, the ferromagnetic frontier lines can take a
finite value D larger than its critical value Dc = 3 J. Here

again, when Ω approaches (3.24 J < Ω < Ωc) to its crit-
ical value Ωc = 3.516 J, the transition temperature, as a
function of the mean value D, becomes independent of the
fluctuation of the crystal field as shown in Figure 6d for
Ω = 3.3 J. These two latter properties of the system with
N = 6, are similar to those (Fig. 2b and c) obtained for
the honeycomb lattice.

Now, we investigate more precisely the effects of d on
Tc with various values of the transverse field strength.
For low values of D, we obtain (for instance Fig. 7a,
for D = 1.0 J) a very small variation of Tc with d like
in the case N = 3 (see Fig. 3a). But for relatively high
values of D, the model on the simple cubic lattice behaves
differently from the case N = 3. In fact, as is seen in Fig-
ure 7b with D = 3 J, a tricritical behaviour appears in
the phase diagram for low values of the transverse field Ω
and completely disappears for larger values of Ω (but less
than Ωc).

At the ground state of the system, the variation of the
critical value Ωc of the transverse field with d is plotted in
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(a)

(b)

Fig. 7. The variation of the transition temperature with d for
the simple cubic lattice (N = 6), when the mean value of the
crystal field is kept fixed (D = 1 J (a) and D = 3 J (b)). The
number accompanying each curve denotes the value of Ω/J.
Dashed line corresponds to the tricritical line.

Fig. 8. Plot of the critical value Ωc of the transverse field as a
function of d for the simple cubic lattice (N = 6). The number
accompanying each curve denotes the value of D/J.

Figure 8 for different values of D. The obtained phase dia-
gram is qualitatively similar to that obtained in the case of
the honeycomb lattice. We note that for the simple cubic
lattice, the different behaviour (independence and varia-
tion of Ωc with d) expressed in the figure, are obtained
when the mean value of the crystal field is less than or
greater than 0.76 J, respectively.

This work was supported by the agreement of cooperation be-
tween the CNR (Morocco) and the DFG (Germany). We want
to thank the both organizations. One of us (N.B) acknowl-
edges the hospitality of the Institut für Theoretische Physik
der Universität zu Köln.
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10. F.C.Sà. Barreto, I.P. Fittipaldi, B. Zeks, Ferroelectrics 39,
1103 (1981).
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